I/O 多路复用使得程序能同时监听多个文件描述符,能够提高程序的性能,Linux 下实现 I/O 多路用的系统调用主要有 select、poll 和 epoll。
select
主旨思想:
首先要构造一个关于文件描述符的列表,将要监听的文件描述符添加到该列表中。
调用一个系统函数,监听该列表中的文件描述符,直到这些描述符中的一个或者多个进行I/O操作时,该函数才返回。
a. 这个函数阻塞的
b. 函数对文件描述符的检测的操作是由内核完成的
在返回时,它会告诉进程有多少(哪些)描述符要进行I/O操作。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
| // sizeof(fd_set) = 128 1024 #include <sys/time.h> #include <sys/types.h> #include <unistd.h> #include <sys/select.h> int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout); - 参数: - nfds : 委托内核检测的最大文件描述符的值 + 1 - readfds : 要检测的文件描述符的读的集合,委托内核检测哪些文件描述符的读的属性 - 一般检测读操作 - 对应的是对方发送过来的数据,因为读是被动的接收数据,检测的就是读缓冲区 - 是一个传入传出参数 - writefds : 要检测的文件描述符的写的集合,委托内核检测哪些文件描述符的写的属性 - 委托内核检测写缓冲区是不是还可以写数据(不满的就可以写) - exceptfds : 检测发生异常的文件描述符的集合 - timeout : 设置的超时时间
struct timeval { long tv_sec; /* seconds */ long tv_usec; /* microseconds */ }; - NULL : 永久阻塞,直到检测到了文件描述符有变化 - tv_sec = 0 tv_usec = 0, 不阻塞 - tv_sec > 0 tv_usec > 0, 阻塞对应的时间
- 返回值 : - -1 : 失败 - >0(n) : 检测的集合中有n个文件描述符发生了变化
// 将参数文件描述符fd对应的标志位设置为0 void FD_CLR(int fd, fd_set *set); // 判断fd对应的标志位是0还是1, 返回值 : fd对应的标志位的值,0,返回0, 1,返回1 int FD_ISSET(int fd, fd_set *set); // 将参数文件描述符fd 对应的标志位,设置为1 void FD_SET(int fd, fd_set *set); // fd_set一共有1024 bit, 全部初始化为0 void FD_ZERO(fd_set *set);
|
poll
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
| #include <poll.h> struct pollfd { int fd; /* 委托内核检测的文件描述符 */ short events; /* 委托内核检测文件描述符的什么事件 */ short revents; /* 文件描述符实际发生的事件 */ };
struct pollfd myfd; myfd.fd = 5; myfd.events = POLLIN | POLLOUT;
int poll(struct pollfd *fds, nfds_t nfds, int timeout); - 参数: - fds : 是一个struct pollfd 结构体数组,这是一个需要检测的文件描述符的集合 - nfds : 这个是第一个参数数组中最后一个有效元素的下标 + 1 - timeout : 阻塞时长 0 : 不阻塞 -1 : 阻塞,当检测到需要检测的文件描述符有变化,解除阻塞 >0 : 阻塞的时长 - - 返回值: -1 : 失败 >0(n) : 成功,n表示检测到集合中有n个文件描述符发生变化
|

epoll
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
| #include <sys/epoll.h> // 创建一个新的epoll实例。在内核中创建了一个数据,这个数据中有两个比较重要的数据, //一个是需要检 测的文件描述符的信息(红黑树),还有一个是就绪列表,存放检测到数据发送 //改变的文件描述符信息(双向 链表)。 int epoll_create(int size); - 参数: size : 目前没有意义了。随便写一个数,必须大于0 - 返回值: -1 : 失败 > 0 : 文件描述符,操作epoll实例的 typedef union epoll_data { void *ptr; int fd; uint32_t u32; uint64_t u64; } epoll_data_t;
struct epoll_event { uint32_t events; /* Epoll events */ epoll_data_t data; /* User data variable */ };
常见的Epoll检测事件: - EPOLLIN - EPOLLOUT - EPOLLERR
// 对epoll实例进行管理:添加文件描述符信息,删除信息,修改信息 int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event); - 参数: - epfd : epoll实例对应的文件描述符 - op : 要进行什么操作 EPOLL_CTL_ADD: 添加 EPOLL_CTL_MOD: 修改 EPOLL_CTL_DEL: 删除 - fd : 要检测的文件描述符 - event : 检测文件描述符什么事情
// 检测函数 int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout); - 参数: - epfd : epoll实例对应的文件描述符 - events : 传出参数,保存了发送了变化的文件描述符的信息 - maxevents : 第二个参数结构体数组的大小 - timeout : 阻塞时间 - 0 : 不阻塞 - -1 : 阻塞,直到检测到fd数据发生变化,解除阻塞 - > 0 : 阻塞的时长(毫秒) - 返回值: - 成功,返回发送变化的文件描述符的个数 > 0 - 失败 -1
|
epoll的工作模式:
LT 模式 (水平触发)
假设委托内核检测读事件 -> 检测fd的读缓冲区
读缓冲区有数据 - > epoll检测到了会给用户通知
a. 用户不读数据,数据一直在缓冲区,epoll 会一直通知
b. 用户只读了一部分数据,epoll会通知
c. 缓冲区的数据读完了,不通知
- LT(level - triggered)是缺省的工作方式,并且同时支持 block 和 no-block socket。在这种做法中,内核告诉你一个文件描述符是否就绪了,然后你可以对这个就绪的 fd 进行 IO 操作。如果你不作任何操作,内核还是会继续通知你的。
ET 模式(边沿触发)
假设委托内核检测读事件 -> 检测fd的读缓冲区
读缓冲区有数据 - > epoll检测到了会给用户通知
a. 用户不读数据,数据一致在缓冲区中,epoll下次检测的时候就不通知了
b. 用户只读了一部分数据,epoll不通知
c. 缓冲区的数据读完了,不通知
- ET(edge - triggered)是高速工作方式,只支持 no-block socket。在这种模式下,当描述符从未就绪变为就绪时,内核通过epoll告诉你。然后它会假设你知道文件描述符已经就绪,并且不会再为那个文件描述符发送更多的就绪通知,直到你做了某些操作导致那个文件描述符不再为就绪状态了。但是请注意,如果一直不对这个 fd 作 IO 操作(从而导致它再次变成未就绪),内核不会发送更多的通知(only once)。
- ET 模式在很大程度上减少了 epoll 事件被重复触发的次数,因此效率要比 LT 模式高。epoll工作在 ET 模式的时候,必须使用非阻塞套接口,以避免由于一个文件句柄的阻塞读/阻塞写操作把处理多个文件描述符的任务饿死。
1 2 3 4 5 6 7 8 9 10
| struct epoll_event { uint32_t events; /* Epoll events */ epoll_data_t data; /* User data variable */ };
常见的Epoll检测事件: - EPOLLIN - EPOLLOUT - EPOLLERR - EPOLLET
|